شنبه , ۲۰ آذر ۱۳۹۵
دانلود رایگان نرم افزار آنالیز تصویر + فیلم آموزشی
نیمه هادی

نیمه هادی تولید و کاربرد

نام مقاله : نیمه هادی تولیدوکاربرد

گردآوری کننده : صابره حسینی خو

دانشگاه علمی کاربردی صنعت هوانوردی

 نیمه هادی تولید و کاربرد

 

آشنایی با فیزیک حالت جامد

 نیمه هادی
فیزیک کلاسیک می تواند به سوالات محدودی در مورد رسانایی مواد مختلف پاسخ دهد ولی همه ی پدیده های رسانایی را نمی توان به کمک آن توجیه کرد.برای توجیه سایر پدیده ها باید از نظریه ی نواری کمک بگیریم. در این نظریه ساختار جسم جامد دارای چند نوار است که هر نوار از چند تراز انرژی تشکیل شده است که الکترون ها بر این تراز های انرژی قرار می گیرند و با صرف انرژی برابر اختلاف انرژی دو تراز موجود، الکترون به ترازهای بالاتر رفته و رسانش الکتریکی صورت می گیرد. بین هردو نوار انرژی یک منطقه ای است که خالی از الکترون است این ناحیه را گاف انرژی گویند. اجسام رسانا دارای نوار رسانش نیمه پر هستند. اجسام نارسانا فقط دارای نوار پر و خالی هستند. اجسام نیمه رسانا نیز همانند اجسام نارسانا فقط دارای نوار پر و خالی هستند ولی با این تفاوت که گاف انرژی در این مواد کمتر است و با صرف انرژی می توان الکترون ها را از نواری به نوار دیگر منتقل کرد به همین علت است که رسانایی الکتریکی نیمه رسانا ها با افزایش دما افزایش می یابد.
مقدمه
مشاهده‌ی پدیده‌های جدید در اوایل قرن بیستم میلادی و عدم توجیه این پدیده‌ها با قوانین فیزیک آن روز، موجب شد تا دانشمندان برخی نظریه‌های مرسوم فیزیک را دوباره بررسی کنند. نتیجه‌ی این اتفاقات، ظهور دو نظریه‌ی مهم و بنیادی در فیزیک به نام نظریه‌ی نسبیت و نظریه‌ی کوانتوم است.
یکی از این مشاهدات، پدیده‌ی رسانایی الکتریکی در جامدات بود. دانشمندان می‌توانستند بخش‌هایی از این پدیده را با استفاده از نظریه‌های فیزیک کلاسیک توجیه کنند؛ اما آزمایشات جدید، آنها را با وقایعی روبرو کرد که با قوانین قبلی قابل پیش‌بینی و توجیه نبودند.

رسانا یا نارسانا؟!
همانطور که می‌دانیم اتم از دو بخش اصلی به نام هسته و ابرِ الکترونی پیرامون هسته تشکیل شده است. الکترون ها اطراف هسته در حال حرکت‌اند و توسط نیروی جاذبه‌ی الکتروستاتیکی که بین هسته و الکترون‌ها موجود است، در قید جاذبه‌ی هسته‌ی اتم قرار دارند. حال اگر الکترون یا الکترون‌هایی در اتم موجود باشند که بتوانند خود را از قید جاذبه‌ی الکتروستاتیکی هسته رها کنند و آزادانه حرکت کنند، الکترون‌های آزاد نامیده می‌شوند. از آنجاییکه الکترون‌ها دارای بار الکتریکی منفی هستند، با حرکت خود موجب انتقال بار الکتریکی می‌شوند. ازاین‌رو مواد جامدی را که دارای الکترون آزاد هستند، رسانا یا هادی الکتریکی می‌گوییم چرا که الکترون‌ها می‌توانند درون آنها جابه‌جا شوند. از سویی دیگر اگر هیچ الکترونی در اتم نتواند خود را از قید جاذبه‌ی الکتروستاتیکی هسته‌ی اتم رها کند، دیگر عاملی برای انتقال بار الکتریکی وجود ندارد و آن ماده، نارسانا یا عایق الکتریکی نامیده می‌شود.
مقاومت ویژه‌ی الکتریکی به بیان ساده یعنی میزان مقاومت مقدار معینی از یک ماده‌ی خاص در مقابل رسانایی الکتریکی. مقاومت ویژه‌ی الکتریکی در مواد گوناگون متفاوت است و در مورد هر ماده عدد ویژهای است. مثلا مقاومت ویژه‌ی الکتریکی نقره، که یک رسانای خوب محسوب می‌شود، ۱٫۶ * ۱۰-۸ اهم متر است و مقاومت ویژه‌ی الکتریکی تفلون، که یک نارسانای قوی است، ۱۰۱۴ اهم متر است. (توجه کنید که چه تفاوت زیادی دارند!) در جدول ۱ مقاومت ویژه‌ی الکتریکی برخی مواد در دمای اتاق (۲۷ درجه‌ی سانتی‌گراد) داده شده است.

Untitled
جدول ۱ مقاومت ویژه ی الکتریکی چند ماده در دمای اتاق بر حسب اهم متر

همانطور که در جدول۱ نیز مشخص است، رساناها دارای مقاومت ویژه‌ی الکتریکی بسیار کم و نارساناها دارای مقاومت ویژه‌ی الکتریکی بسیار زیاد هستند. با دقت در این جدول به موادی مانند سیلیسیوم و ژرمانیوم برمی‌خوریم که مقاومت ویژه‌ی الکتریکی آن‌ها بین مقاومت ویژه‌ی الکتریکی رساناها و نارساناها است. این مواد را که مقاومت ویژه‌ی الکتریکی آن‌ها نه شبیه رساناها و نه شبیه نارساناها است، نیمه‌رسانا یا نیمه‌هادی می‌گوییم.
همه آنچه تاکنون گفته شد مطابق آن چیزی است که در فیزیک کلاسیک بیان میشود. همانطور که میبینیم فیزیک کلاسیک می‌تواند تفاوت بین رسانا و نارسانا را با بیانی ساده و به خوبی مشخص کند؛ اما آیا می‌داند که چرا رسانایی الکتریکی در رساناهای گوناگون متفاوت است؟ چرا الماس و گرافیت که هر دو از عنصر کربن تشکیل شدهاند، یکی نارسانا و دیگری رسانا است؟ چرا مقاومت ویژهی الکتریکی رساناها با افزایش دما بیشتر میشود، اما مقاومت ویژهی الکتریکی نیمه‌رساناها همانطور که در آزمایش هم دیده میشود با افزایش دما، کمتر میشود؟ و … . این‌ها چند نمونه از پدیدههایی است که در فیزیک کلاسیک بدون پاسخ میماند.

یک نظریهی جدید!

نظریهی نواری؟!
همانطور که می‌دانیم الکترون‌ها در مدارهای معینی که هر یک انرژی ویژه‌ای دارند، در اطراف هسته‌ی اتم حرکت می‌کنند. این مقدار انرژی را تراز انرژی آن مدار می‌گوییم. به هر یک از این مدارها و تراز انرژی وابسته به آن، یک حالت کوانتومی برای الکترون‌های آن اتم می‌گوییم.
در یک اتم الکترون‌ها ابتدا ترازهای پایین‌تر انرژی را پر می‌کنند. به بیان دیگر حالت‌های کوانتومی در هر اتم از تراز پایین به بالا توسط الکترون‌های آن اتم اشغال می‌شود. (این ماجرا مشابه آن است که شما درون یک کاسه تعدادی تیله بریزید، واضح است که تیله‌هایی که ابتدا می‌ریزید در تَهِ کاسه قرار می‌گیرند و تیله‌های بعدی به تدریج روی تیله‌های پایینی می‌ایستند.)
هنگامیکه همه‌ی الکترون‌ها به ترتیب ترازهای انرژی را از پایین به بالا پر می‌کنند، می‌گوییم اتم در حالت پایه‌ی خود قرار دارد. از طرف دیگر، الکترون می‌تواند با جذب مقداری انرژی، تراز خود را ترک کند و به تراز بالاتری که خالی است برود که در این حالت می‌گوییم اتم برانگیخته شده است. مقدار این انرژی دقیقا برابر مقدار اختلاف انرژی دو تراز است.
خُب، آنچه تاکنون بیان شد مربوط به یک اتمِ تنها بود. اما در اجسام جامد که متشکل از تعداد بسیار زیادی اتم است، ترازهای انرژیِ الکترون‌ها چگونه‌اند؟ پاسخ این پرسش همان چیزی است که به آن نظریه‌ی نواری می‌گوییم و مبتنی بر اصول مکانیک کوانتوم است. (ادامه‌ی ماجرا را با دقت بیشتری بخوانید!)
در جسم جامد به جای یک اتم، با مجموعه‌ای از اتم‌های نزدیک به هم سر و کار داریم. بنابراین دیگر فقط با یک هسته (با بار مثبت) و تعدادی الکترون (با بار منفی) که اطراف هسته‌ی اتم حرکت می‌کند، روبرو نیستیم؛ بلکه اکنون تعداد بسیار زیادی الکترون هستند که تحت تاثیر نیروهای حاصل از تمام هسته‌های مثبت قرار دارند. دانشمندان مدت‌های طولانی این مسئله‌ی بسیار پیچیده را بررسی کردند تا بالاخره نتایج زیر را بدست آورند:
ترازهای انرژی الکترون‌ها در جسم جامد، مانند ترازهای انرژی الکترون‌ها در یک اتم، مقدار انرژی ویژه‌ای دارند.
ترازهای انرژی الکترون‌ها در جسم جامد، مانند ترازهای انرژی الکترون‌ها در یک اتم، مقدارهایی گسسته‌اند. (یعنی ترازهای انرژی الکترون‌ها در جسم جامد هر مقداری نمی‌تواند باشد و فقط مقادیر خاصی هست. بنابراین می‌گوییم این مقدار پیوسته نیست و گسسته است. به این نوع کمیت‌ها در مکانیک کوانتومی، کمیت کوانتیده گفته می‌شود.)
هر تراز انرژی تنها توسط یک الکترون می‌تواند پر شود. (در بعضی کتاب‌ها می‌گویند هر تراز انرژی توسط دو الکترون با اسپین مخالف پر می‌شود. البته این دو، متناقض هم نیستند و فقط بیان‌ها در مورد تراز انرژی با یکدیگر متفاوت است!).و مهم‌تر از همه اینکه ترازهای انرژی الکترون‌ها در جسم جامد، نوارهای مشخصی را تشکیل می‌دهند. هر نوار انرژی شامل تعداد بسیار زیادی ترازهای گسسته است که از نظر مقدار انرژی بسیار به هم نزدیک‌اند. تفاوت انرژی برخی نوارها بسیار زیاد است. یعنی بین آخرین تراز انرژی نوار پایین با اولین تراز انرژی نوار بالا، اختلاف انرژی زیادی وجود دارد. در این فاصله هیچ تراز انرژی وجود ندارد، یعنی الکترون‌ها در این فاصله نمی‌توانند قرار بگیرند. این ناحیه را ناحیه‌ی ممنوع یا گاف انرژی می‌گوییم.

Untitled
شکل ۱- نحوه قرارگیری ترازها، نوارها و گاف انرژی

.با توجه به این توضیحات، به نظر شما الکترون‌ها چگونه در جسم جامد توزیع می‌شوند؟ در جسم جامد الکترون‌ها به ترتیب از پایین‌ترین تراز انرژی در پایین‌ترین نوار توزیع می‌شوند. از آنجاییکه در هر تراز انرژی فقط یک الکترون می‌تواند قرار بگیرد، ترازهای انرژی به ترتیب توسط الکترون‌ها پر می‌شوند تا یک نوار انرژی کاملا پر شود. الکترون‌های بعدی در ترازهای انرژی نوار بالاتر قرار می‌گیرند و این ماجرا ادامه می‌یابد تا همه‌ی الکترون‌ها در ترازهای انرژی جا بگیرند. بدین ترتیب آخرین نوار انرژی یا کاملا از الکترون پر است و یا نیمه‌پر است. واضح است نوارهای انرژی پایین‌تر همگی پر هستند و نوارهای انرژی بالاتر همگی خالی هستند.
همانطور که بیان شد در یک اتم الکترون‌ها می‌توانند با جذب مقداری انرژی، که دقیقا برابر اختلاف دو تراز انرژی است، از یک تراز انرژی پایین‌تر به تراز انرژی بالاتر بروند. در جسم جامد هم الکترون‌ها با جذب انرژی می‌توانند از تراز انرژی پایین‌تر به تراز انرژی بالاتر در همان نوار منتقل شوند. اما برای تغییر تراز انرژی از یک نوار به نوار بالاتر، انرژی بسیار زیادی لازم است که در شرایط معمولی، اتفاق نمی‌افتد. بنابراین گذار الکترون از یک تراز انرژی به تراز انرژی دیگر، تنها در صورتی انجام می‌شود که نوار نیمه‌پر باشد؛ چون الکترون‌ها فقط می‌توانند به ترازهای انرژی بالاتر در همان نوار گذار کنند و گذار از یک نوار به نوار بالاتر امکان‌پذیر نیست.
از آنجاییکه الکترون‌های موجود در نوارهای پر، امکان گذار از یک تراز انرژی به تراز انرژی بالاتر را ندارند، بنابراین سهمی در رسانایی الکتریکی ندارند. به بیان دیگر تنها الکترون‌هایی که در نوارهای نیمه‌پر قرار دارند و امکان گذار از یک تراز انرژی به تراز انرژی بالاتری در همان نوار را دارند، در رسانایی الکتریکی جسم جامد نقش دارند. دقت کنید وقتی می‌گوییم الکترون از یک تراز انرژی به تراز انرژی بالاتری رفته، منظور افزایش سطح انرژی الکترون است، نه حرکت فیزیکی! (یعنی تلاش نکنید زیر میکروسکوپ دنبال ترازها و نوارهای انرژی بگردید!!!)

رسانا، نارسانا و نیمه‌رسانا در نظریه‌ی نواری

الف) ساختار نواری اجسام رسانا
اگر در ساختار نواری جسم جامد، نوار نیمه‌پر وجود داشته باشد، آن جسم رسانا است. زیرا الکترون‌های نوار نیمه‌پر به آسانی و تحت تاثیر اختلاف پتانسیل الکتریکی که دو سر رسانا اِعمال می‌شود، می‌توانند تراز انرژی خود را تغییر دهند و در رسانایی الکتریکی شرکت کنند. این الکترون‌ها را الکترون‌های رسانش و نوار نیمه‌پر را نوار رسانش می‌گوییم. پس مشخصه‌ی اصلی رساناها، وجود نوار نیمه‌پر در ساختار نواری آن‌ها است (شکل ۲). در رسانایی الکتریکی شرکت کنند.
این الکترون‌ها را الکترون‌های رسانش و نوار نیمه‌پر را نوار رسانش می‌گوییم. پس مشخصه‌ی اصلی رساناها، وجود نوار نیمه‌پر در ساختار نواری آن‌ها است

Untitled
شکل ۲- نحوه قرارگیری ترازها، نوارها و گاف انرژی در یک جسم رسانا

ب) ساختار نواری اجسام نارسانا
در ساختار نواری جامدات نارسانا، نوار نیمه‌پر وجود ندارد. گاف انرژی در جامدات نارسانا بسیار بزرگ است و بنابراین هیچ الکترونی نمی‌تواند از نوار پر به نوار خالی گذار کرده و موجب رسانایی الکتریکی شود. در این مواد رسانایی الکتریکی انجام نمی‌شود.

Untitled
شکل ۳- نحوه قرارگیری ترازها، نوارها و گاف انرژی در یک جسم نارسانا

پ) ساختار نواری اجسام نیمه‌رسانا
در ساختار نواری جامدات نیمه‌رسانا، همانند نارسانا، نوار نیمه‌پر وجود ندارد. اما گاف انرژی در نیمه‌رساناها بسیار کمتر از نارساناها است. در نیمه‌رسانا، بالاترین نوار پر را نوار ظرفیت و پایین‌ترین نوار خالی را نوار رسانش می‌گوییم. کوچک بودن گاف انرژی در جامدات نیمه رسانا موجب می‌شود که تعدادی از الکترون‌های نوار ظرفیت حتی در دمای اتاق برانگیخته شده، به نوار رسانش بروند و در رسانایی الکتریکی شرکت کنند. با افزایش دما، الکترون‌های بیشتری امکان گذار از نوار ظرفیت به نوار رسانش می‌یابند و بنابراین رسانایی الکتریکی بیشتر می‌شود.

Untitled
شکل ۴- نحوه قرارگیری ترازها، نوارها و گاف انرژی در یک جسم نیمه‌رسانا

درخواست انجام پروژه آنالیز تصویر

همچنین ببینید

طیف سنجی به روش NMR

ارسالی از : سارا شفتی دانشگاه آمورش عالی گناباد طیف سنجی رزونانس مغناطیسی هسته ای : …

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Time limit is exhausted. Please reload the CAPTCHA.